Liaw and Kakadiaris on Primary Care Artificial Intelligence

HOUSTON, TX – Dr. Winston Liaw and Dr. Ioannis A. Kakadiaris, both from the University of Houston (UH), published an article in The Annals of Family Medicine titled Primary Care Artificial Intelligence: A Branch Hiding in Plain Sight.

In the article, Liaw and Kakadiaris write that primary care artificial intelligence “should aim to improve care delivery and health outcomes; using this benchmark, it has yet to make an impact,” AI in Healthcare reported.

The authors cited “the lack of engagement from the primary-care community as a prime reason for the disappointing showing to date,” and “suggest the widespread reticence has real-world consequences,” AI in Healthcare reported.

“Without input from primary care,” they point out, healthcare AI researchers “may fail to grasp the context of primary care data collection, its role within the health system and the forces shaping its evolution,” AI in Healthcare reported.

Liaw and Kakadiaris noted the AI challenges facing primary care, AI in Healthcare reported:

Inefficient data entry- “Without timely data, artificial intelligence systems do not have the information they need to make decisions,” the authors write.

Poorly processed data, “because researchers mistrust the accuracy of the data that does get entered in primary care, the understandable tendency is to ‘omit or modify data according to arbitrary or inappropriate rules, which can lead artificial intelligence systems to learn the wrong lessons,’” AI in Healthcare reported.

Unexplained (“black box”) AI results, Liaw and Kakadiaris write, “For users to trust artificial intelligence systems, they need to understand why decisions are made.”

Magnification of existing biases- “The systematic under- or over-prediction of probabilities for populations emerges for multiple reasons, including biased training data and outcomes influenced by earlier, biased decisions.”  

Siloed data- “This leads to tools that perform worse when used at different institutions. Furthermore, the population on which the tool was trained may shift, causing its performance to suffer over time.”

Privacy concerns- “With the digitization of data, patients are increasingly unable to determine when, how, and to what extent information about them is communicated to others. Breaches and misuse erode trust in artificial intelligence systems and may make individuals reluctant to access care,” the authors write.

AI in Healthcare noted Liaw and Kakadiaris conclusion that “we do not simply need the application of artificial intelligence to primary care, but rather, the development of new methods that are tailored to the breadth, complexity and longitudinality of primary care,” and “generalists are set apart by our overriding interest in people, an interest that is vital to the creation of a bond between physician and patient.”

“To this the authors add that the proliferation of electronic health records (EHRs) and, with it, the rise of AI, threaten this bond by adding ‘more and more layers’ of technology,” AI in Healthcare reported.

In order to prevent this challenge from becoming a serious problem, primary care AI “needs to narrow this divide by facilitating new opportunities for connection” between primary-care researchers and academic AI experts, the authors write, adding that “finding creative solutions to this challenge is necessary if we hope to restore the relationships that sustain us and our patients,” AI in Healthcare reported.

Dr. Winston Liaw, MD, MPH, is chair of the Health Systems and Population Health Sciences department at the University of Houston College of Medicine. His expertise is in using geospatial techniques and community resources to address unmet social needs in primary care settings. In particular, he is an expert on the application of neighborhood deprivation indices to primary care delivery and using geospatial tools to teach population health concepts.

Born in Greece, Dr. Ioannis A. Kakadiaris, PhD, is a Hugh Roy and Lillie Cranz Cullen University Professor of Computer Science, Electrical & Computer Engineering, and Biomedical Engineering at the University of Houston. He joined UH in August 1997 after a postdoctoral fellowship at the University of Pennsylvania. He earned his BSc in Physics at the University of Athens in Greece, his MSc in Computer Science from Northeastern University and his PhD at the University of Pennsylvania. He is also the founder and director of the Computational Biomedicine Lab. His research interests include biometrics, computer vision, and pattern recognition, biomedical image analysis and cardiovascular informatics.


Dr. Kalla Gervasio hails from Italy on her father’s side, and Athens and Thessaloniki on the side of her mother –  a Greek-American from Wilmington, DE.

Top Stories


A pregnant woman was driving in the HOV lane near Dallas.

General News

FALMOUTH, MA – The police in Falmouth have identified the victim in an accident involving a car plunging into the ocean on February 20, NBC10 Boston reported.

General News

NEW YORK – Meropi Kyriacou, the new Principal of The Cathedral School in Manhattan, was honored as The National Herald’s Educator of the Year.


After Amazon, Google’s First Cloud Region Coming to Greece

ATHENS - Despite having a costly Internet that’s the slowest in the European Union, Greece is continuing to attract high-tech giants, with Alphabet’s Google planning to create its first cloud region in the country.

Enter your email address to subscribe

Provide your email address to subscribe. For e.g. abc@xyz.com

You may unsubscribe at any time using the link in our newsletter.